16 research outputs found

    Chronic low back pain: a prospective study with 4 to 15 years follow-up after a multidisciplinary biopsychosocial rehabilitation program

    Get PDF
    BACKGROUND: Multidisciplinary biopsychosocial rehabilitation (MBR) in patients with chronic low back pain (CLBP) is superior to less intensive treatments for at least one year, but the long-term course of the disease is largely unknown. The primary aim of this study was to describe the long-term course of an MBR in relation to pain, disability, and quality of life from the beginning of an MBR to between 4 to 15 years after participation. The secondary aim was to explore the long-term course of an MBR in relation to physiological outcomes of functioning. METHODS: This was a observational study conducted at a university hospital. The cohort consisted of participants of a 3-week, CLBP-specific MBR program between August 2001 and January 2013. The North American Spine Society questionnaire (NASS) pain and disability scale was the primary patient -reported outcome measure (PROM). The NASS neurogenic symptoms scale and the Short-Form 36 (SF-36) health survey were secondary PROMs. Patients were assessed before entry to the MBR (T0), at entry (T1), at discharge (T2) and 4 to 15 years after discharge (T3). Effects were quantified by effect size (ES). Score differences were tested for significance using parametric or non-parametric tests and linear mixed models. RESULTS: Of 299 consecutive patients from the MBR program, 229 could be contacted. Of these, 84 declined participation, five did not meet the inclusion criteria, and 26 had incomplete data. Thus, 114 patients were included. The mean follow-up time was 9.2 years. At T3, patients exhibited beneficial effects for NASS pain and disability with a moderate ES (ES = 0.63; p < 0.001). The NASS neurogenic symptoms scale was stable. The SF-36 scales showed an improvement in the bodily pain domain (ES = 1.02; p < 0.001), but no significant changes for physical functioning, physical role, general health, vitality, social functioning, emotional role, or mental health. The physical health component summary was improved (ES = 0.40, p = 0.002), and the mental health summary was unchanged. The linear mixed model analysis confirmed improvements in pain and disability between T1 and T3 (p = 0.010). CONCLUSIONS: The results of this study suggest that there is a long-term benefit of MBR participation in patients with CLBP

    A hyperelastic model for simulating cells in flow

    Get PDF
    In the emerging field of 3D bioprinting, cell damage due to large deformations is considered a main cause for cell death and loss of functionality inside the printed construct. Those deformations, in turn, strongly depend on the mechano-elastic response of the cell to the hydrodynamic stresses experienced during printing. In this work, we present a numerical model to simulate the deformation of biological cells in arbitrary three-dimensional flows. We consider cells as an elastic continuum according to the hyperelastic Mooney-Rivlin model. We then employ force calculations on a tetrahedralized volume mesh. To calibrate our model, we perform a series of FluidFM(R) compression experiments with REF52 cells demonstrating that all three parameters of the Mooney-Rivlin model are required for a good description of the experimental data at very large deformations up to 80%. In addition, we validate the model by comparing to previous AFM experiments on bovine endothelial cells and artificial hydrogel particles. To investigate cell deformation in flow, we incorporate our model into Lattice Boltzmann simulations via an Immersed-Boundary algorithm. In linear shear flows, our model shows excellent agreement with analytical calculations and previous simulation data.Comment: 15 pages, 9 figures, Supplementary information included. Unfortunately, the journal version misses an important contributor. The correct author list is the one given in this document. Biomech Model Mechanobiol (2020

    A versatile biomaterial ink platform for the melt electrowriting of chemically-crosslinked hydrogels

    Get PDF
    In this study, we designed a novel biomaterial ink platform based on hydrophilic poly(2-ethyl-2-oxazine) (PEtOzi) specifically for melt electrowriting (MEW). This material crosslinks spontaneously after processing via dynamic Diels–Alder click chemistry. These direct-written microperiodic structures rapidly swell in water to yield thermoreversible hydrogels. These hydrogels are robust enough for repeated aspiration and ejection through a cannula without structural damage, despite their high water content of 84%. Moreover, the scaffolds retain functional groups for modification using click chemistry and therefore can be readily functionalized as demonstrated using fluorophores and peptides to facilitate visualization and cell attachment. The PEtOzi hydrogel developed here is compatible with confocal imaging and staining protocols for cells. In summary, an advanced material platform based on PEtOzi is reported that is compatible with MEW and results in functionalizable chemically crosslinked microperiodic hydrogels.Peer reviewe

    Correlative analysis of intra-versus extracellular cell detachment events via the alignment of optical imaging and detachment force quantification

    Get PDF
    In recent decades, hybrid characterization systems have become pillars in the study of cellular biomechanics. Especially, Atomic Force Microscopy (AFM) is combined with a variety of optical microscopy techniques to discover new aspects of cell adhesion. AFM, however, is limited to the early-stage of cell adhesion, so that the forces of mature cell contacts cannot be addressed. Even though the invention of Fluidic Force Microscopy (FluidFM) overcomes these limitations by combining the precise force-control of AFM with microfluidics, the correlative investigation of detachment forces arising from spread mammalian cells has been barely achieved. Here, a novel multifunctional device integrating Fluorescence Microscopy (FL) into FluidFM technology (FL-FluidFM) is introduced, enabling real-time optical tracking of entire cell detachment processes in parallel to the undisturbed acquisition of force-distance curves. This setup, thus, allows for entailing two pieces of information at once. As proof-of-principle experiment, this method is applied to fluorescently labeled rat embryonic fibroblast (REF52) cells, demonstrating a precise matching between identified force-jumps and visualized cellular unbinding steps. This study, thus, presents a novel characterization tool for the correlated evaluation of mature cell adhesion, which has great relevance, for instance, in the development of biomaterials or the fight against diseases such as cancer

    Differential effects of the translocator protein 18 kDa (TSPO) ligand etifoxine and the benzodiazepine alprazolam on startle response to predictable threat in a NPU-threat task after acute and short-term treatment

    Get PDF
    Rationale Benzodiazepines have been extensively investigated in experimental settings especially after single administration, which mostly revealed effects on unpredictable threat (U-threat) rather than predictable threat (P-threat). Given the need for pharmacological alternatives with a preferable side-effect profile and to better represent clinical conditions, research should cover also other anxiolytics and longer application times. Objectives The present study compared the acute and short-term effects of the translocator protein 18 kDa (TSPO) ligand etifoxine and the benzodiazepine alprazolam on P-threat and U-threat while controlling for sedation. Methods Sixty healthy male volunteers, aged between 18 and 55 years, were randomly assigned to receive a daily dose of either 150 mg etifoxine, 1.5 mg alprazolam, or placebo for 5 days. On days 1 and 5 of intake, they performed a NPU-threat task including neutral (N), predictable (P), and unpredictable (U) conditions, while startle responsivity and self-reports were studied. Sedative effects were assessed using a continuous performance test. Results Neither alprazolam nor etifoxine affected startle responsivity to U-threat on any of the testing days. While etifoxine reduced the startle response to P-threat on day 1 of treatment for transformed data, a contrary effect of alprazolam was found for raw values. No effects on self-reports and no evidence of sedation could be observed for either drug. Conclusions None of the anxiolytic substances had an impact on startle potentiation to U-threat even after several days of intake. The effects of the anxiolytics on startle responsivity to P-threat as well as implications for future studies are discussed

    Korrelation der FluidFM® Technologie und Fluoreszenzmikroskopie zur Visualisierung von zellulären Ablöseschritten

    No full text
    This thesis aimed the development of a correlated device which combines FluidFM® with Fluorescence Microscopy (FL) (FL-FluidFM®) and enables the simultaneous quantification of adhesion forces and fluorescent visualization of mature cells. The implementation of a PIFOC was crucial to achieve a high-resolution as well as a stable but dynamic focus level. The functionality of SCFS after hardware modification was verified by comparing two force-curves, both showing the typical force progression and measured with the optimized and conventional hardware, respectively. Then, the integration of FL was examined by detaching fluorescently labeled REF52 cells. The fluorescence illumination of the cytoskeleton showed the expected characteristic force profile and no evidence of interference effects. Afterwards a corresponding correlative data analysis was addressed including manual force step fitting, the identification of visualized cellular unbinding, and a time-dependent correlation. This procedure revealed a link between the area of cytoskeletal unbinding and force-jumps. This was followed by a comparison of the detachment characteristics of intercellular connected HUVECs and individual REF52 cells. HUVECs showed maximum detachment forces in the same order of magnitude as the ones of single REF52 cells. This contrasted with the expected strong cohesiveness of endothelial cells and indicated a lack of cell-cell contact formation. The latter was confirmed by a comparison of HUVECs, primary HBMVECs, and immortalized EA.hy926 cells fluorescently labeled for two marker proteins of intercellular junctions. This unveiled that both the previous cultivation duration and the cell type have a major impact on the development of intercellular junctions. In summary, the correlative FL FluidFM® represents a powerful novel approach, which enables a truly contemporaneous performance and, thus, has the potential to reveal new insights into the mechanobiological properties of cell adhesion.Ziel dieser Arbeit war die Entwicklung eines korrelierten Gerätes, das FluidFM® mit Fluoreszenzmikroskopie (FL) kombiniert (FL-FluidFM®) und die gleichzeitige Quantifizierung von Adhäsionskräften und Fluoreszenzvisualisierung ausgereifter Zellen ermöglicht. Die Implementierung eines PIFOC war entscheidend, um eine hohe Auflösung sowie ein stabiles, aber dynamisches Fokusniveau zu erreichen. Die Funktionalität der SCFS nach der Hardwaremodifikation wurde durch den Vergleich zweier Kraftkurven verifiziert, die beide den typischen Kraftverlauf zeigten und jeweils mit der optimierten bzw. konventionellen Hardware gemessen wurden. Anschließend wurde die Integration von FL durch das Ablösen fluoreszenzmarkierter REF52-Zellen untersucht. Unter Fluoreszenzbeleuchtung des Zytoskeletts zeigte sich das erwartete charakteristische Kraftprofil und kein Hinweis auf Störeffekte. Anschließend wurde eine entsprechende korrelative Datenanalyse durchgeführt, die eine manuelle Kraftstufenanpassung, die Identifizierung der visualisierten zellulären Ablösung und eine zeitabhängige Korrelation umfasste. Dieses Verfahren ergab einen Zusammenhang zwischen dem Bereich der Zytoskelett-Ablösung und den Kraftsprüngen. Es folgte ein Vergleich der Ablösungseigenschaften von interzellulär verbundenen HUVECs und einzelnen REF52-Zellen. HUVECs zeigten maximale Ablösekräfte in der gleichen Größenordnung wie die von einzelnen REF52-Zellen. Dies stand im Gegensatz zu der erwarteten starken Kohäsion von Endothelzellen und deutete auf eine fehlende Zell-Zell-Kontaktbildung hin. Letzteres wurde durch einen Vergleich von HUVECs, primären HBMVECs und immortalisierten EA.hy926-Zellen bestätigt, die für zwei Markerproteine für interzelluläre Verbindungen fluoreszierend markiert wurden. Dabei zeigte sich, dass sowohl die vorherige Kultivierungsdauer als auch der Zelltyp einen großen Einfluss auf die Entwicklung von interzellulären Verbindungen haben. Zusammenfassend lässt sich sagen, dass das korrelative FL-FluidFM® einen leistungsstarken neuen Ansatz darstellt, der eine korrelative Durchführung ermöglicht und somit das Potenzial hat, neue Erkenntnisse über die mechanobiologischen Eigenschaften der Zelladhäsion zu liefer

    Correlative Analysis of Intra– Versus Extracellular Cell Detachment Events via the Alignment of Optical Imaging and Detachment Force Quantification

    No full text
    In recent decades, hybrid characterization systems have become pillars in the study of cellular biomechanics. Especially, Atomic Force Microscopy (AFM) is combined with a variety of optical microscopy techniques to discover new aspects of cell adhesion. AFM, however, is limited to the early-stage of cell adhesion, so that the forces of mature cell contacts cannot be addressed. Even though the invention of Fluidic Force Microscopy (FluidFM) overcomes these limitations by combining the precise force-control of AFM with microfluidics, the correlative investigation of detachment forces arising from spread mammalian cells has been barely achieved. Here, a novel multifunctional device integrating Fluorescence Microscopy (FL) into FluidFM technology (FL-FluidFM) is introduced, enabling real-time optical tracking of entire cell detachment processes in parallel to the undisturbed acquisition of force-distance curves. This setup, thus, allows for entailing two pieces of information at once. As proof-of-principle experiment, this method is applied to fluorescently labeled rat embryonic fibroblast (REF52) cells, demonstrating a precise matching between identified force-jumps and visualized cellular unbinding steps. This study, thus, presents a novel characterization tool for the correlated evaluation of mature cell adhesion, which has great relevance, for instance, in the development of biomaterials or the fight against diseases such as cancer

    Determination of the total circulating blood volume using magnetic particle spectroscopy

    No full text
    The knowledge of the patient’s total blood volume is essential in clinical routine. A variety of methods have been studied over the past decades but due to its extend volume and intricate distribution throughout the body only few of them result in accurate total blood volume determination. In this work, we present a method for measuring the total blood volume based on Magnetic Particle Spectroscopy (MPS). The presented method consists of three major steps. First, from the signal-to-noise ratio (snr) estimation of the undiluted tracer and a chosen minimum accuracy of the blood volume determination combined with a rough estimation of it, a bolus volume for injection is calculated. This step has to be performed only once per used tracer. In a second step, the bolus is injected into the subject. Last, a small amount of blood is taken after a mixing time. From the measured concentration, the total blood volume is calculated with at minimum the prior given accuracy from step one
    corecore